

Module 3: The concept of congruence

Part B - The converse of the Pythagorean theorem

The Pythagorean theorem is one of $3^2 + 4^2$ the oldest known formulas in mathematics. It is the right triangle relationship defined by $a^2 + b^2 = c^2$ where a and b are the legs of the $3^2 + 4^2$ right triangle and ci s the hypotenuse (longest side). Math ▲ $5^2 + 12^2$ To prove a triangle is a right triangle use the Pythagorean Theorem and confirm the relationship $a^2 + b^2 = c^2$. 5²+12² [5] $[x^2]$ [+] [1] [2] $[x^2]$ [-] [SHIFT] $[\cdot, \cdot, \cdot]$ 132 Math ▲ 7²+23² In this example the product is not a perfect square so the triangle is not a right triangle. 7 $x^2 + 2 3 x^2 = SHIFT \cdots$

Eureka Math: CASIO Technology Instructions

You can use the calculator to help solve for a missing leg in the theorem by subtracting from the hypotenuse.

$$12^{2} + b^{2} = 13^{2}$$

 $b^{2} = 13^{2} - 12^{2}$
 $b^{2} = 169 - 122$
 $b^{2} = 25$

b=5

1 3 x^2 - 1 2 x^2 = SHIFT •••

