

Module 6: Examples of functions from geometry

Part B - How strong is the nonlinear relationship

Most regression models include a correlation coefficient (r). This value helps you determine the strength and direction of a relationship.

1:A 2:B 3:r 4:% 5:0

Here are all the types of regression models that are built in.

2: A + BX- Linear Regression

 $3: _+ CX^2 (A + BX + CX^2)$ Quadratic Regression- Does not include r.

 $A \cdot \ln X \cdot (A + R \cdot \ln X) - \text{Natural Loc}$

4: In X (A + B*In X)- Natural Log Regression

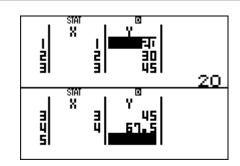
5: e^X (A*e^{BX})- Exponential base e Regression

6: A*B^X (A*B^X)- Exponential Regression

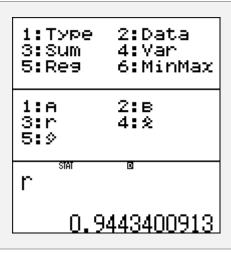
7: $A*X^B$ ($A*X^B$)- Power Regression

8: 1/X (A + B/X)- Inverse Regression

1:1-VAR 2:A+BX 3:_+CX2 4:1n X 5:@^X 6:A·B^X 7:A·X^B 8:1/X


Eureka Math: CASIO Technology Instructions

Choose a model that best fits the data set you have been given and enter the values. This example will look at bacterial growth using an exponential model. Choose **6**.


X	Υ
1	20
2	30
3	45
4	67.5

To see the strength of this relationship press

AC SHIFT 1 5 3 =

The correlation coefficient is only one part of determining the fitness of a model and should be used with a graph of the data set.

